Tight Sum-Of-Squares Lower Bounds for Binary Polynomial Optimization Problems

نویسندگان

  • Adam Kurpisz
  • Samuli Leppänen
  • Monaldo Mastrolilli
چکیده

We give two results concerning the power of the Sum-of-Squares(SoS)/Lasserre hierarchy. For binary polynomial optimization problems of degree 2d and an odd number of variables n, we prove that n+2d−1 2 levels of the SoS/Lasserre hierarchy are necessary to provide the exact optimal value. This matches the recent upper bound result by Sakaue, Takeda, Kim and Ito. Additionally, we study a conjecture by Laurent, who considered the linear representation of a set with no integral points. She showed that the Sherali-Adams hierarchy requires n levels to detect the empty integer hull, and conjectured that the SoS/Lasserre rank for the same problem is n− 1. We disprove this conjecture and derive lower and upper bounds for the rank.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doubly Nonnegative Relaxations for Quadratic and Polynomial Optimization Problems with Binary and Box Constraints

We propose doubly nonnegative (DNN) relaxations for polynomial optimization problems (POPs) with binary and box constraints to find tight lower bounds for their optimal values using a bisection and projection (BP) method. This work is an extension of the work by Kim, Kojima and Toh in 2016 from quadratic optimization problems (QOPs) to POPs. We show how the dense and sparse DNN relaxations are ...

متن کامل

Sum of squares lower bounds from symmetry and a good story

In this paper, we develop machinery for proving sum of squares lower bounds on symmetric problems based on the intuition that sum of squares has difficulty capturing integrality arguments, i.e. arguments that an expression must be an integer. Using this machinery, we prove a tight sum of squares lower bound for the following Turan type problem: Minimize the number of triangles in a graph $G$ wi...

متن کامل

On the construction of converging hierarchies for polynomial optimization based on certificates of global positivity

Abstract. In recent years, techniques based on convex optimization and real algebra that produce converging hierarchies of lower bounds for polynomial optimization problems (POPs) have gained much popularity. At their heart, these hierarchies rely crucially on Positivstellensätze from the late 20th century (e.g., due to Stengle, Putinar, or Schmüdgen) that certify positivity of a polynomial on ...

متن کامل

Rigorous Affine Lower Bound Functions for Multivariate Polynomials and Their Use in Global Optimisation

This paper addresses the problem of finding tight affine lower bound functions for multivariate polynomials, which may be employed when global optimisation problems involving polynomials are solved with a branch and bound method. These bound functions are constructed by using the expansion of the given polynomial into Bernstein polynomials. The coefficients of this expansion over a given box yi...

متن کامل

Local stability analysis using simulations and sum-of-squares programming

The problem of computing bounds on the region-of-attraction for systems with polynomial vector fields is considered. Invariant subsets of the region-of-attraction are characterized as sublevel sets of Lyapunov functions. Finite-dimensional polynomial parametrizations for Lyapunov functions are used. A methodology utilizing information from simulations to generate Lyapunov function candidates sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016